

Ғылымның, білімнің және бизнестің интеграциясы Интеграция науки, образования и бизнеса Integration of science, education and business

DOI 10.53364/24138614_2021_21_2_57 УДК 620.1

> ¹Демидов А.Н.,^{*} ст. преподаватель, ²Каримбеков М.А., доцент, д.т.н. ^{1,2} Национальный исследовательский университет «МЭИ» г. Москва, РФ.

¹*E*-mail:<u>DemidovAN@mpei.ru</u>^{*} ²*E*-mail: KarimbekovMA@mpei.ru

ОПРЕДЛЕНИЕ ПРОЧНОСТНЫХ СВОЙСТВ ИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ ДЛЯ ВЫСОКОВОЛЬТНЫХ ВВОДОВ

ЖОҒАРЫ ВОЛЬТТЫ КІРМЕЛЕР ҮШІН ОҚШАУЛАҒЫШ МАТЕРИАЛДАРДЫҢ БЕРІКТІК ҚАСИЕТТЕРІН АНЫҚТАУ

DETERMINATION OF THE STRENGTH PROPERTIES OF INSULATION MATERIALS FOR HIGH-VOLTAGE INPUTS

Аннотация. В данной работе представлены результаты исследования прочностных свойств образцов из изоляционного материала RIP (бумага, пропитанная смолой) испытаниями на растяжение и индентирование.

Ключевые слова: изоляционный материал, растяжение, индентирование, диаграммы растяжения и индентирования.

Аңдатпа. Бұл жұмыста гір оқшаулағыш материалынан (шайырмен сіңдірілген қағаз) үлгілердің беріктік қасиеттерін зерттеу нәтижелері ұсынылған.

Түйін сөздер: оқшаулағыш материал, созылу, индивидуация, созылу және индивидуация диаграммалары.

Annotation. This paper presents the results of a study of the strength properties of samples made of RIP insulation material (resin-impregnated paper) by tensile and indentation tests.

Keywords: insulation material, stretching, indentation, stretching and indentation diagrams.

Введение

Высоковольтные вводы служат изоляционными конструкциями в аппаратах энергетического и электротехнического назначения и используются для ввода/вывода высокого напряжения [1]. Они являются обязательными элементами силовых трансформаторов, реакторов и линий электропередачи и работают в трудных климатических условиях. Поэтому разработка более прочных и легких изоляционных материалов, устойчивых к внешним климатическим воздействиям и способных выдерживать значительные нагрузки является актуальней задачей.

Цель и постановка задачи

Цель работы – определение прочностных свойств изоляционных материалов RIP испытаниями на растяжение и индентирование

Материал и методика исследований

На растяжение были испытаны образцы из изоляционного материала RIP с исходным диаметром $d_0 = 6$ мм и рабочей длиной $l_p = 40$ мм. Исследования проводились при температурах +40, +55, +23, -30 и -45 °C, причем при каждой температуре были испытаны по 2 образца. Каждый образец был изготовлен в соответствии с ГОСТ 11262-80 [2]. В качестве испытательной машины была использована установка Instron 5982. Необходимая температура испытаний создавалась в климатической камере

Instron-SFT 3119 (рис. 1). Погрешность отклонения температуры составляла \pm 0,5°C, а скорость перемещения захватов испытательной машины была равной 2 мм/мин.

Рис. 1. Испытательная машина INSTRON 5982 с климатической камерой Instron-SFT 3119

Машина управляется с помощью компьютера и специального программного обеспечения Bluehill 3, которое включает в себя множество стандартных вычислений, например: условного предела текучести, временного сопротивления при разрыве, модуля Юнга, предельного равномерного удлинения, относительного удлинения после разрыва и др. В процессе испытания отображаются в реальном режиме времени две диаграммы деформирования «нагрузка (P) – абсолютное удлинение (Δl)», «условное напряжение (σ) – относительное удлинение (δ)» и после испытания выдается таблица с результатами прочностных свойств.

Рис. 2. Первичные диаграммы растяжения, полученные для материала для образца №1 при температуре +23 °C

На рисунке 1, *а* представлены диаграммы растяжения «Р - Δ l» и « σ - δ » для одного из образцов. Для каждого образца были определены разрушающие напряжения при разрыве при заданной температуре (табл. 1). Среднее значение разрушающего напряжения составило 9,96 кГ/мм² (97,7 МПа). Максимальный абсолютный разброс этого напряжения для образцов, разорвавшихся в расчетной базе, составил ±1,83 кг/мм² (17,9 МПа).

Характер диаграмм растяжения всех испытанных образцов оказался сходным и соответствовал диаграмме растяжения для хрупкого материала с небольшим отклонением от прямолинейного начального участка диаграммы в точке разрыва, к тому же разрушение образца происходило в точке, соответствующей максимальной нагрузки диаграммы растяжения, поэтому для такого материала значения разрушающего напряжения $\sigma_{\rm K}$, предела текучести $\sigma_{0,2}$, временного сопротивления $\sigma_{\rm B}$ и истинного сопротивления разрыву S_K практически равны между собой.

Из таблицы 1 видно, что значения нагрузки при разрыве образца P_K и разрушающего напряжения σ_K практически мало зависят от температуры. Несколько ниже оказались значения РК и σ_K , полученные на образце №4. Это связано с тем, что он разрушился не в рабочей части, а в зоне перехода от цилиндрической к конической поверхности образцов.

Поисковые предварительные исследования по установлению возможности определения прочностных свойств данного материала индентированием показали, что существующие стандартные методы определения твердости не применимы [3]. Метод Роквелла не применим из-за недопустимо большой глубины отпечатка, получаемой даже при минимальной допустимой нагрузке 60 кг. Методы Бринелля и Виккерса не применимы из-за невозможности измерения восстановленного диаметра отпечатка, вследствие слабой отражательной способности поверхности материала. Для измерения диаметра отпечатка с требуемой точностью нужна дополнительная подготовка поверхности материала путем нанесения тонкого слоя специального покрытия. Таким путем удалось измерить диаметр отпечатка микроскопом МПВ-1, встроенным в прибор

МЭИ-Т7 (рис. 3), и определить твердость по Бринеллю НВ [3], которая оказалась равной 33 кГ/мм² (323,7 МПа) (табл. 2).

Рис. 3. Прибор МЭИ-Т7

Таблица 1

N⁰	t, °C	d0,	F 0,	Рк		σκ≈ σв	
образца		MM	MM ²	Н	кΓ	МПа	кГ/мм ²
7	-45	6,0	28,26	2650	270	93,8	9,6
8		6,0	28,26	3300	336	116,8	11,9
5	-30	6,0	28,26	3100	316	109,7	11,2
6		6,0	28,26	3200	326	113,2	11,5
1	+23	6,1	29,21	2330	238	79,8	8,1
2		5,8	26,41	2300	234	87,1	8,9
1	+40	6,0	28,26	2700	275	95,5	9,8
2		6,0	28,26	2850	291	100,8	10,3
3	+55	6,0	28,26	2750	280	97,3	9,9
4		6,0	28,26	2000	204	70,8	7,2

Результаты определения разрушающего напряжения образцов из RIP при изменении температуры испытаний

Наиболее подходящим способом безобразцового определения прочностных свойств данного материала является кинетическое индентирование с регистрацией диаграммы вдавливания в координатах «нагрузка - глубина внедрения индентора».

Такая диаграмма, зарегистрированная для материала RIP на приборе МЭИ-ТА (рис. 4) [4, 5], причем максимальная нагрузка составляла 19 кг на сферический индентор диаметром D=2,5 мм. Исследования показали, что оптимальная максимальная нагрузка по методу кинетического индентирования для материала марки RIP составляет 15-20 кг.

способ растяжения Instron 5982			Прибор МЭ	И-Т7	Прибор МЭИ-ТА			
$\sigma_{\rm B}$		HB	σ _B		HB	σΒ		
МПа	$\kappa\Gamma/{\rm MM}^2$	кГ/мм ²	МПа	$\kappa\Gamma/{\rm MM}^2$	$\kappa\Gamma/mm^2$	МПа	$\kappa\Gamma/{\rm MM}^2$	
109,7	11,2	33* 33**	107,9 107,9	11 11	34,6	112,8	11,5	

Примечания: * нагрузка вдавливания была равной 15 кг. ** нагрузка вдавливания была равной 20 кг.

Диаграмма содержит ветвь нагружения и ветвь разгрузки и позволяет определить невосстановленную и восстановленную глубину отпечатка, что дает возможность разделить упругую и пластическую составляющие общей упругопластической деформации материала при заданной нагрузке вдавливания (рис. 5). Это позволяет рассчитать твердость материала по методу Бринелля по диаграммам вдавливания. Результаты испытаний представлены в таблице 2.

Рис. 5. Кинетическая диаграмма вдавливания, полученная для материала RIP на автоматизированном приборе МЭИ-ТА

Расчет твердости по Бринеллю НВ по диаграмме вдавливания показал, что она составляет 34,6 кг/мм² (339,4 МПа) при нагрузке вдавливания 19 кг на сферический индентор диаметром D=2,5 мм. Однако для более точного определения НВ по диаграмме вдавливания необходимо знать значение модуля нормальной упругости Е для изоляционного материала RIP.

Разработка методики определения Е для данного материала по диаграмме вдавливания представляет самостоятельную техническую задачу.

Тем не менее, если ориентироваться на значение HB=33 кГ/мм² (323,7 МПа) и временное сопротивление σ_B =9,6 кГ/мм² (94,2 МПа), то отношение σ_B /HB составляет примерно 1/3, т.е. столько же, как и для металлических материалов. Это дает основание считать, что существует возможность определения предела прочности данного материала безобразцовым способом – методом индентирования, однако для этого требуются дополнительные исследования. Это даст возможность определять прочность изоляционного материала без изготовления образцов на растяжение, что приведет к

существенному ускорению процесса контроля и экономии материала и трудозатрат без изготовления и испытаний образцов на растяжение.

Выводы

1. Полученные значения нагрузки при разрыве образца и разрушающего напряжения практически мало зависят от температуры при –45°С до +55°С.

2. Установлено отношение σ_B/HB=1/3, которое дает возможность определения предела прочности изоляционного материала без изготовления образцов на растяжение безобразцовым способом – методом индентирования.

Список использованных источников

1. Славинский А.З. Физика диэлектриков. Высоковольтная изоляция энергетической аппаратуры. – М.: Издательство «Научтехлитиздат», 2007. – 256 с.

2. ГОСТ 11262-80. Пластмассы. Метод испытания на растяжение.

3. ГОСТ 4670-91. Пластмассы. Определение твердости.

4. Матюнин В.М. Индентирование в диагностике механических свойств материалов. – М.: Издательский дом МЭИ, 2015. – 288 с.

5. Матюнин В.М., Марченков А.Ю., Каримбеков М.А., Демидов А.Н., Волков П.В. Механические и технологические испытания конструкционных материалов: учебное пособие. – М.: Издательский дом МЭИ.

References

1. Slavinski A.Z. Fizika dielektrikov. Vysokovöltnaia izoläsia energeticheskoi apparatury. – M.: İzdatelstvo «Nauchtehlitizdat», 2007. – 256 s.

2. GOST 11262-80. Plastmassy. Metod ispytania na rastäjenie.

3. GOST 4670-91. Plastmassy. Opredelenie tverdosti.

4. Matünin V.M. İndentirovanie v diagnostike mehanicheskih svoistv materialov. – M.: İzdatelski dom MEİ, 2015. – 288 s.

5. Matünin V.M., Marchenkov A.İu., Karimbekov M.A., Demidov A.N., Volkov P.V. Mehanicheskie i tehnologicheskie ispytania konstruksionnyh materialov: uchebnoe posobie. – M.: İzdatelski dom MEİ.